

Safety and Efficacy of ATSN-201 Dose Escalation in Patients with X-Linked Retinoschisis (XLRS)

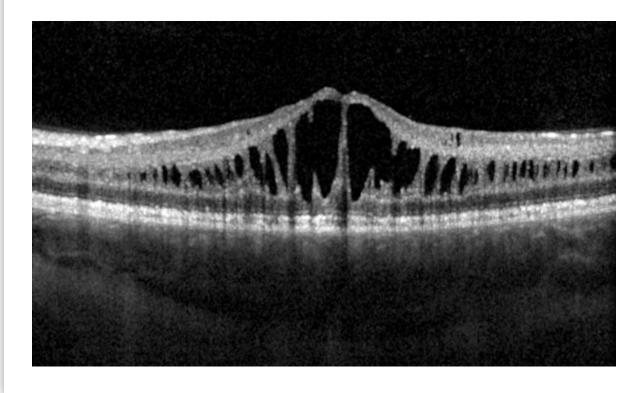
Shannon E. Boye¹, Lesley Everett², Aaron Nagiel^{3,4}, Byron Lam⁵, Andreas Lauer², Audina Berrocal⁵, Nell Gregori⁵, Sanford L. Boye⁶, Laura Pardon⁷, Dan Yoon⁷, Christine N. Kay⁸, Kenji Fujita⁷

- 1. Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL
- 2. Casey Eye Institute, Oregon Health & Science University, Portland, OR
- 3. The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA
- 4. Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
- 5. Bascom Palmer Eye Institute, University of Miami, Miami, FL
- 6. Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL
- 7. Atsena Therapeutics, Durham, NC
- 8. Vitreoretinal Associates, Gainesville, FL

Disclosures (SE Boye)

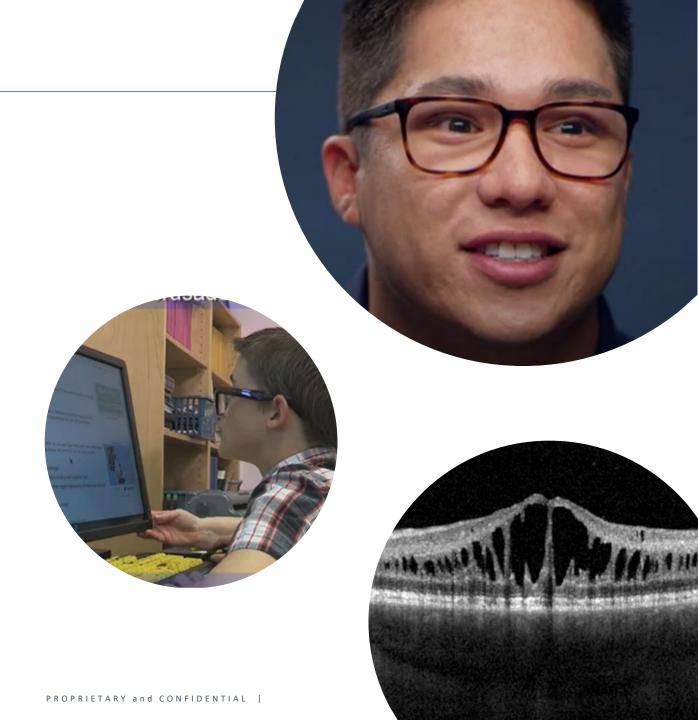
Consultant

Atsena Therapeutics

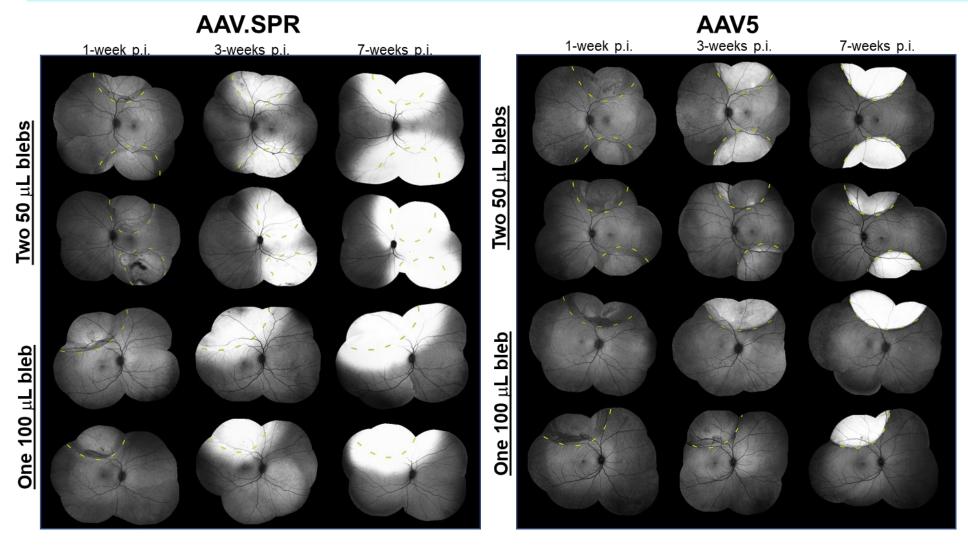

X-Linked Retinoschisis (XLRS)

XLRS is one of the most common causes of juvenile macular degeneration in males

XLRS is caused by mutations in RS1 gene


- Results in loss of vision due to splitting of retinal layers and increased risk of retinal detachment
- RS1 encodes the protein retinoschisin (RS1), expressed primarily in photoreceptors and, to a lesser extent, bipolar cells
- Upon secretion, RS1 binds to inner segments of rods and cones, bipolar cells, and the outer plexiform layer
- RS1 has a role in cell-cell adhesion, fluid balance, and the photoreceptor/bipolar cell synapse

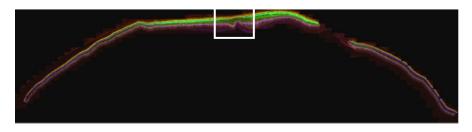
FOVEAL SCHISIS IN XLRS

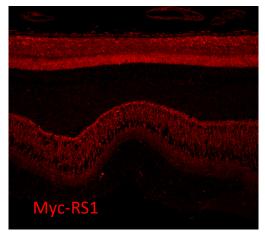

Patient experience with XLRS

- XLRS affects ~35,000 people in the United States and Europe
- As an X-linked disease, occurs primarily in males
- Young boys usually present with reduced vision by early elementary school
- Typically present with BCVA of 20/60 to 20/120
- Vision slowly deteriorates throughout life and may progress to legal blindness (20/200) in the 5th or 6th decade of life
- Patients are at risk of retinal detachment and are told to avoid activities that can cause trauma
- Increased surgical risk due to fragile retina, avoid foveal detachment with subretinal gene therapy

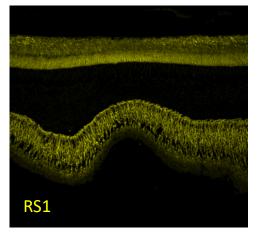
AAV.SPR is a novel, laterally spreading AAV

Non-human primate (NHP) studies

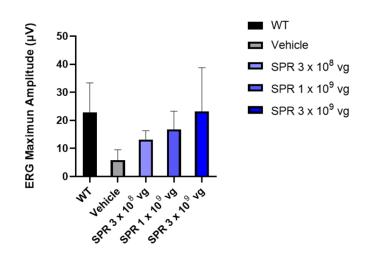


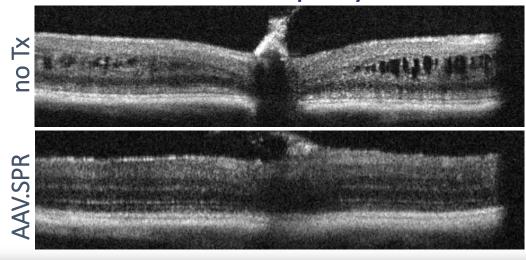

- AAV.SPR promotes transgene expression (GFP) 7-12 mm beyond the borders of the original subretinal injection bleb
- AAV.SPR transduces foveal cones without the need for subfoveal injection
- AAV.SPR transduces much larger areas of the retina
- Efficient foveal cone transduction is achieved with either one (100μL) or two (50μL) peripheral subretinal injections with AAV.SPR
- Outperforms benchmarks: AAV5-mediated transgene expression is restricted to region of retinal detachment and does not transduce foveal cones following peripheral subretinal injection

XLRS: Preclinical data using AAV.SPR in NHP and RS1KO mouse

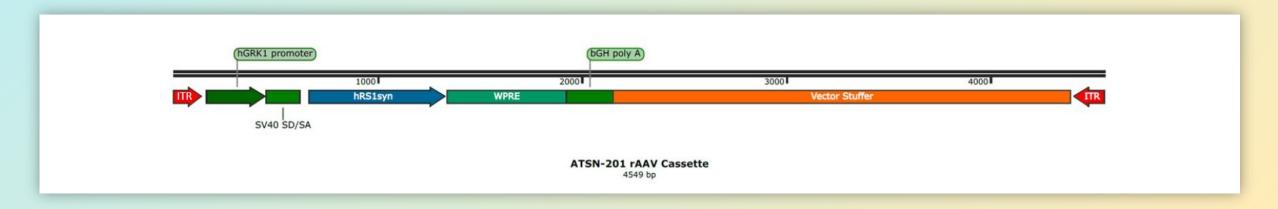

CROSS SECTION OF RETINA

NHP images




Robust expression in central retina

Myc staining perfectly co-localizes with endogenous RS1


Schisis cavities completely resolved

AAV.SPR capsid enables **safe** and **efficient** delivery of RS1 to central retina of XLRS patients. Preclinical data demonstrates **resolution of schisis cavities** and **restores retinal function** to wt levels (by ERG)

ATSN-201 subretinal gene therapy for XLRS

- ATSN-201 (rAAV.SPR-hGRK1-hRS1syn) is a subretinal gene therapy product being developed to introduce the functional human retinoschisin (hRS1) gene to photoreceptors
- AAV.SPR capsid
- Human rhodopsin kinase promoter
- Synthetic human RS1 transgene (hRS1syn)
- Poly-adenylation signal derived from bovine growth hormone, all flanked by inverted terminal repeats

bGH = bovine growth hormone; hGRK1 = human rhodopsin kinase;

hRS1syn = synthetic human retinoschisin with synonymous point mutations;

ITR = inverted terminal repeat;

poly A = polyadenylation;

rAAV = recombinant adeno-associated virus;

SV40 SD/SA = simian virus 40 splice donor/splice acceptor;

WPRE = woodchuck hepatitis virus post-transcriptional regulatory element

XLRS Phase 1/2 Clinical Trial Design (NCT05878860)

150 μL of ATSN-201 was administered by subretinal injection to the worse-seeing eye, using 2-3 blebs and avoiding foveal detachment

ENROLLED	COHORT	PART A: Dose Escalation		
/	1	Low dose (N=3), ≥ 18 years	1.5E10 vg/eye	
/	2	High dose (N=3), ≥ 18 years	5.0E10 vg/eye	
✓	3	Mid dose (N=3), ≥ 18 years	3.0E10 vg/eye	

BASELINE CHARACTERISTICS

	COHORT 1	COHORT 2	COHORT 3
Median age in years (range)	21 (18 to 26)	24 (18 to 60)	26 (24 to 31)
Median Snellen BCVA (range)	20/50 (20/50 to 20/160)	20/100 (20/50 to 20/100)	20/100 (20/40 to 20/125)

Corticosteroid administration: 7-week oral prednisone regimen starting at 1 mg/kg/day, 20 mg triamcinolone acetonide periocular injection, 250 mg IV methylprednisolone, and 28-day topical prednisolone acetate 1% regimen

Key inclusion criteria:

- Male with clinical diagnosis of XLRS caused by pathogenic or likely pathogenic mutations in RS1
- BCVA of **34 to 73 ETDRS letters** (20/200 to 20/40)
- Presence of foveal (or parafoveal/perifoveal) schisis in the study eye on OCT

Primary endpoint:

• The incidence of dose-limiting toxicities (DLTs) and treatment-emergent adverse events (TEAEs) over a 52-week period following a single subretinal dose of ATSN-201 (safety follow-up will continue to 5 years)

Key secondary endpoints:

- Structural: Optical coherence tomography (OCT)
- Functional:
 - Microperimetry (MP)
 - Best-corrected visual acuity (BCVA)
 - Low luminance visual acuity (LLVA)

5/19/2025

ATSN-201 has demonstrated a favorable safety profile

No DLTs and no instances of macular hole formation or retinal detachment

Total of 76 TEAEs reported

- 73 Grade 1-2 in severity
- 46 related to surgical procedure

Cohort 2 (high dose):

Data cutoff: 5 March 2025

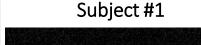
- 3 TEAEs of subretinal deposits
- 3 TEAEs of retinal thickening
- 1 TEAE of ERM (significant intra-operative laser)
- Improvement with additional steroids

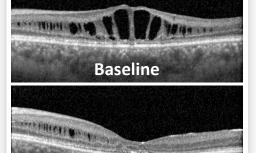
Cohort 3 (mid dose):

- 1 TEAE of subretinal deposits
- 3 TEAEs of retinal thickening
- Improvement with additional steroids

No subjects have discontinued from the study

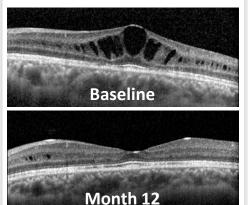
No treatment-related SAEs

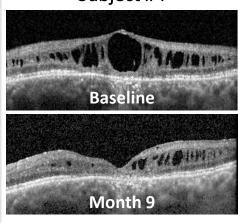

• 1 SAE of fever of unknown origin with negative workup (7 months after treatment)


	Cohort 1 N=3	Cohort 2 N=3	Cohort 3 N=3	Total N=9
# of Events				
Any TEAE	29	27	20	76
Any Serious TEAE	1	0	0	1
Any Severe TEAE	1	2	0	3
Severity				
Grade 1	21	14	14	49
Grade 2	7	11	6	24
Grade 3	1	2	0	3
Grade 4 or 5	0	0	0	0
Related to ATSN-201				
Possibly / Probably / Definitely Related	3	10	6	19
Not Related / Unlikely to be Related	26	17	14	57
Related to Surgical Procedure				
Possibly / Probably / Definitely Related	20	17	9	46
Not Related / Unlikely to be Related	9	10	11	30

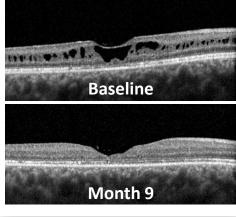
CONFIDENTIAL 9

7 of 9 treated eyes had closure of foveal schisis


Cohort 1 (Low Dose)

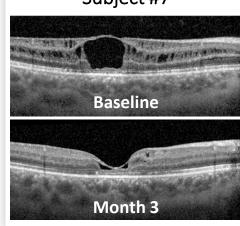

Month 12

Subject #3



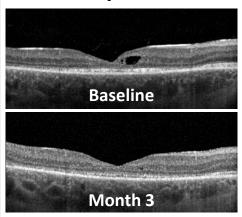
Cohort 2 (High Dose)

Subject #4



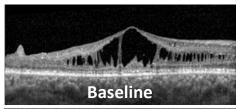
Subject #6

Cohort 3 (Mid Dose)


Subject #7

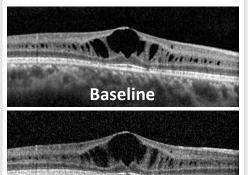
Subject #8

Subject #9

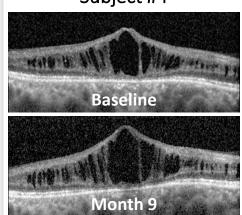

For the 2 treated eyes that did not demonstrate foveal schisis closure:

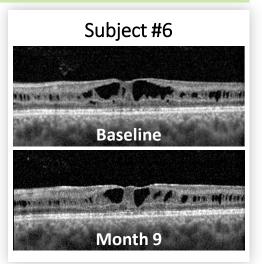
- Subject #2 had blebs placed further in the periphery
- Subject #5 developed ERM following intra-operative laser

Untreated eyes did not demonstrate foveal schisis closure


Cohort 1 (Low Dose)

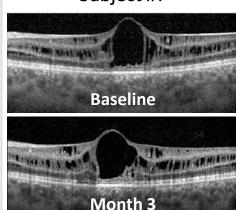
Subject #1

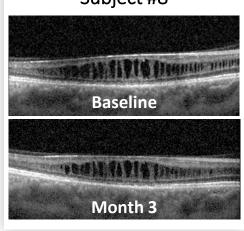



Subject #3

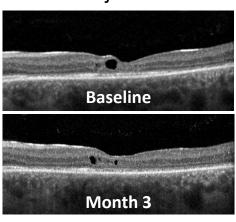
Cohort 2 (High Dose)

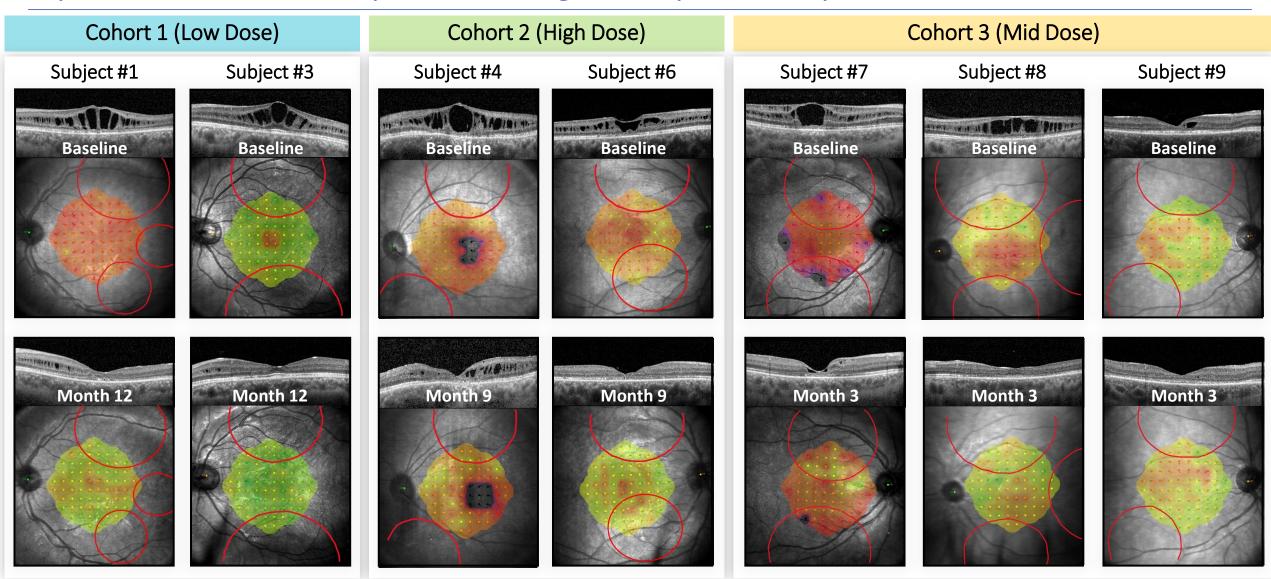
Subject #4

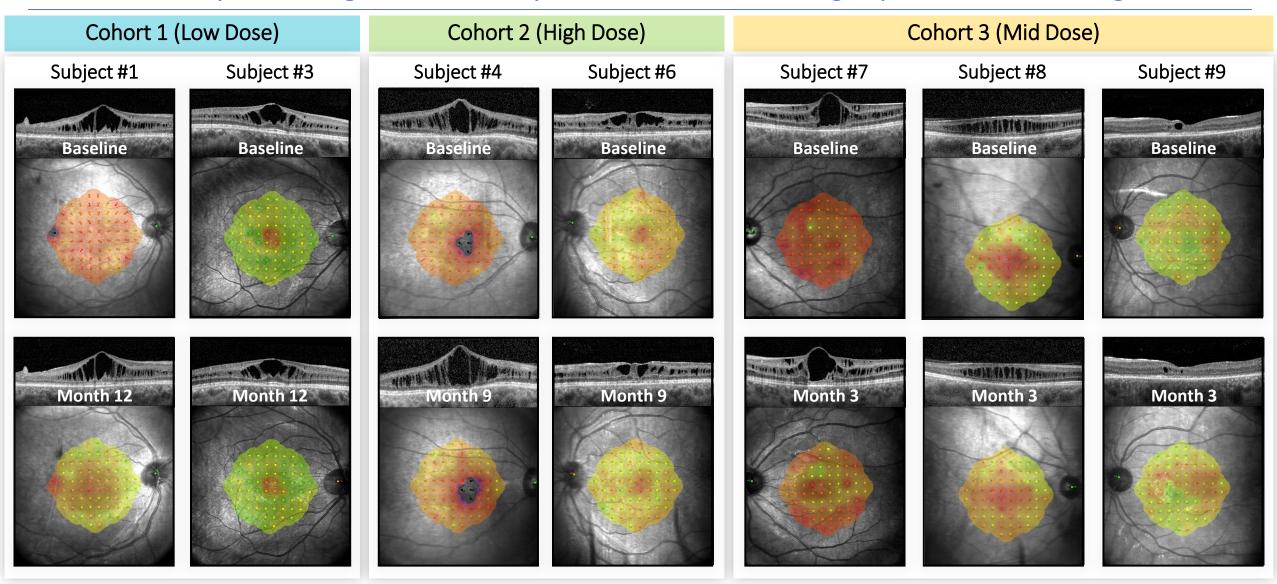



Cohort 3 (Mid Dose)

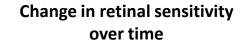
Month 12

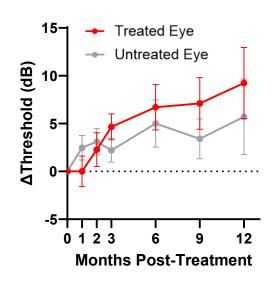

Subject #7

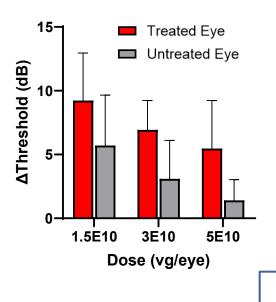

Subject #8


Subject #9

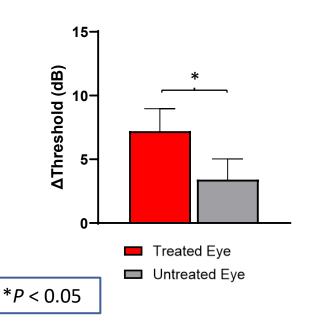
Eyes with structural improvements generally show improvements in function



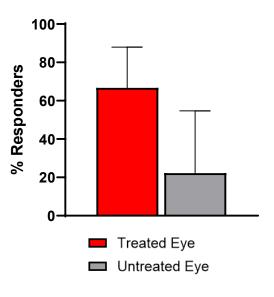

Untreated eyes changed minimally, with some showing a possible learning effect


Treated eyes demonstrate improvements in MP compared to untreated eyes

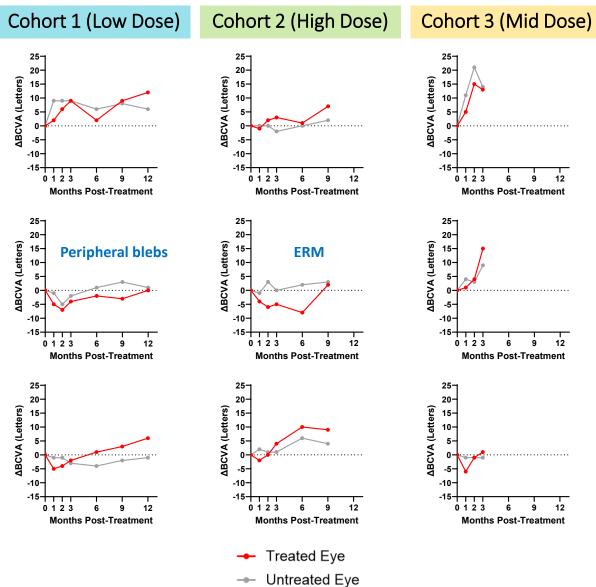
Data represented as average of 5 loci with lowest sensitivity at Baseline (19 dB cutoff, additional loci included if tied)



Change in retinal sensitivity by cohort


Change in retinal sensitivity for all cohorts combined

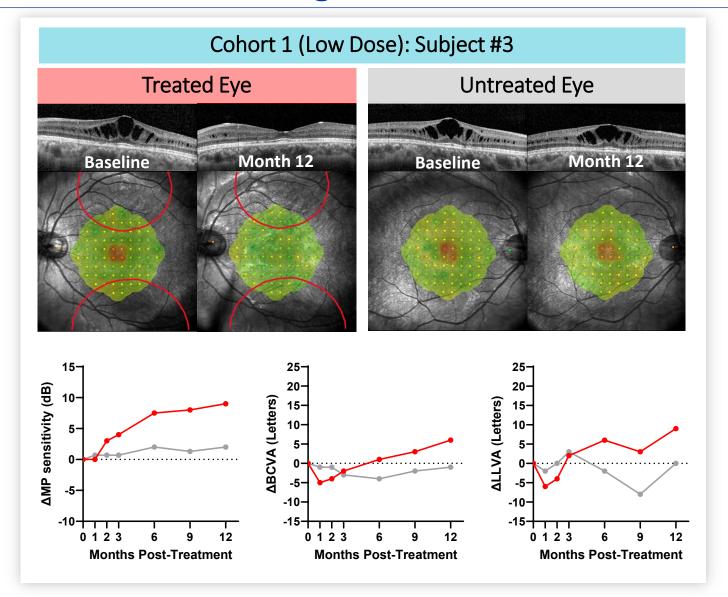
Data include:

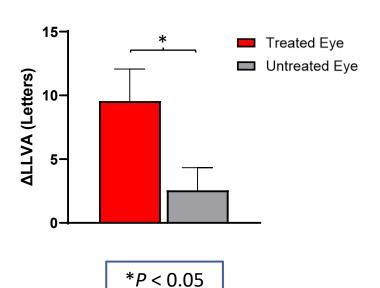

- Cohort 1 through 12 months
- Cohort 2 through 9 months
- Cohort 3 through 3 months

% Responders for all cohorts combined

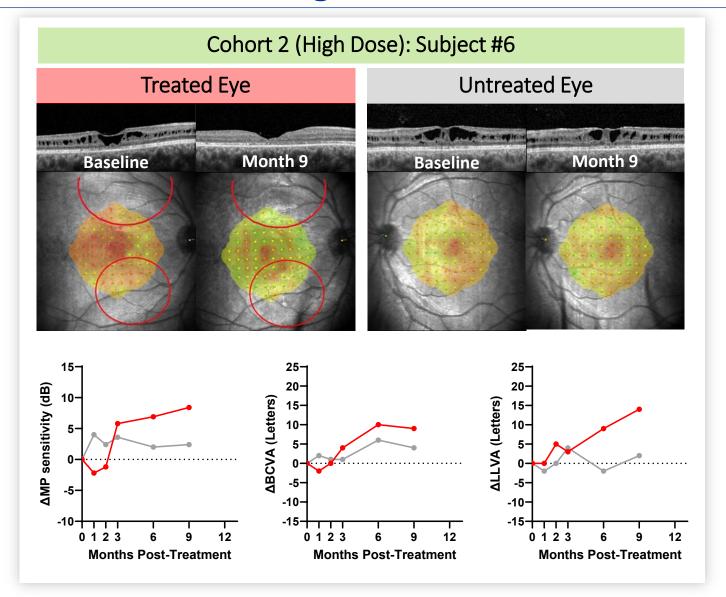
Responder if <u>selected loci</u> <u>improved by ≥ 7dB on average</u> (scotomatous points excluded, additional loci included if tied)

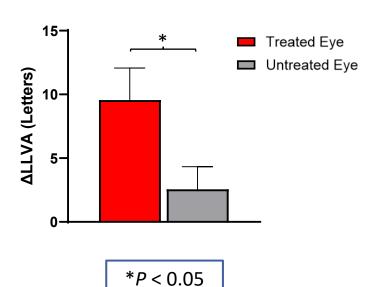
BCVA generally improves post-treatment



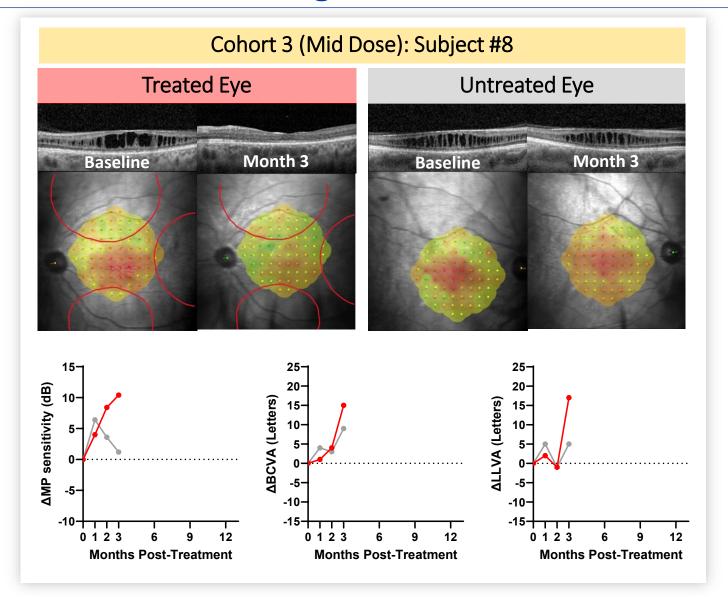

- Cohort 1 through 12 months
- Cohort 2 through 9 months
- Cohort 3 through 3 months

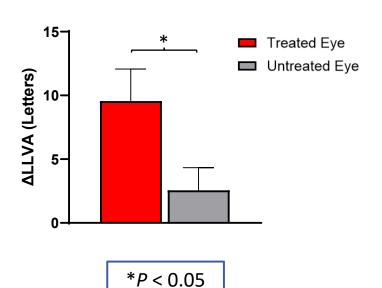
LLVA results are aligned with other measures of function


All Cohorts


- Cohort 1 through 12 months
- Cohort 2 through 9 months
- Cohort 3 through 3 months

LLVA results are aligned with other measures of function


All Cohorts


- Cohort 1 through 12 months
- Cohort 2 through 9 months
- Cohort 3 through 3 months

LLVA results are aligned with other measures of function

All Cohorts

- Cohort 1 through 12 months
- Cohort 2 through 9 months
- Cohort 3 through 3 months

Currently enrolling Part B (Dose Expansion)

ENROLLED	COHORT	PART A: Dose Escalation		
/	1	Low dose (N=3), ≥ 18 years	1.5E10 vg/eye	
✓	2	High dose (N=3), ≥ 18 years	5.0E10 vg/eye	
✓	3	Mid dose (N=3), ≥ 18 years	3.0E10 vg/eye	

ENROLLED	COHORT	PART B: Dose Expansion		
		Control (N=3), ≥ 18 years	No intervention	
\rightarrow	4	Low volume (N=3), ≥ 18 years	1.5E10 vg/eye	
		High volume (N=3), ≥ 18 years	2.3E10 vg/eye	
	5	TBD (N=3), ≥ 6 and < 18 years	TBD	

Cohort 4 (Adult)

- Enrolling 9 subjects, randomized 1:1:1 into:
 - Control
 - No intervention
 - Optional cross-over after 12-month Main Study Period
 - Low Volume
 - 150 μL of 1.0E11 vg/mL (1.5E10 vg/eye)
 - Administered in ~two 75 μL blebs
 - High Volume
 - **225** μL of 1.0E11 vg/mL (2.3E10 vg/eye)
 - Administered in **~three 75 μL blebs**

Cohort 5 (Pediatric)

- Will enroll 3 subjects
- Subjects will receive either the low or high volume from Cohort 4

5/19/2025

ATSN-201 (rAAV.SPR-hGRK1-hRS1syn)

is a subretinal gene therapy product being developed to introduce the functional human retinoschisin (hRS1) gene to photoreceptors

SAFETY

- A low dose of 1.5 x 10¹⁰ vg/eye is well-tolerated through 1 year post-treatment
- Subretinal deposits and transient retinal thickening have been observed at higher doses (improvement with additional steroids)
- Majority of adverse events **Grade 1-2** in severity and related to the **surgical procedure**
- One serious adverse event to date
 - Unrelated to study drug or procedures
- No dose-limiting toxicities
- Subretinal injection, avoiding foveal detachment, can be safely performed in patients with XLRS

EFFICACY

- Preliminary evidence of efficacy at all 3 dose levels
- Majority of treated eyes demonstrated closure of foveal schisis
- Of the 2 subjects without a substantial decrease in central retinal thickness:
 - One subject had blebs further in the periphery and high body weight with transient post-treatment inflammation (possible underdosing of steroid)
 - One subject required intra-operative laser and developed an ERM
- Improvements in visual function (MP, BCVA, LLVA)
 observed in eyes demonstrating closure of foveal
 schisis

Thank you!

And thank you to the patients and their families!

